Plans for FCC-\(e^+e^-\) WG5: QCD & \(\gamma-\gamma\) physics

FCC kick-off meeting
Geneva – 14\(^{\text{th}}\) Feb. 2014

David d'Enterria, Peter Skands
CERN
FCC-e⁺e⁻ Working-Group-5 mandate:
- Physics objectives

QCD physics at FCC-e⁺e⁻ (non-exhaustive list):
- High-precision (<1% uncertainty) strong coupling determination
- Precision multi-jets and parton-hadronization studies
- Two-photon measurements: $F_2(x,Q^2)$ gluon in photon, BFKL via VV..

Non-QCD physics via $\gamma\gamma$ at FCC-e⁺e⁻ (non-exhaustive list):
- Effective two-photon luminosities
- Examples: $\gamma\gamma \rightarrow \gamma\gamma$, aQGC via $\gamma\gamma WW$, $\gamma\gamma \rightarrow$ Higgs,...
 - anomalous tau e.m. moments via $\gamma\gamma \rightarrow \tau\tau$

Summary & next steps:
- WG5 managerial objectives
- WG5 milestones & deliverables
WG5 mandate: Physics objectives

- Determine best achievable EXP & TH precision on α_s measurement via: Z,W,\(\tau\) hadronic decays widths, jet rates, event shapes,

- Explore other competitive QCD physics opportunities opened in e+e-.

- Evaluate photon-photon physics possibilities via EPA fluxes: Higgs, anomalous quartic gauge couplings, anomalous top,\(\tau\) e.m. moments,...

- Set goals for sub-detector performance (including forward e\(\pm\) taggers for $\gamma\gamma$ physics) and experimental-conditions so that syst.~stat. Uncertainties for the measurements

- Define experimental/phenomenological software needs to make possible these measurements and their interpretation with the required precision.

- Help evaluating the QCD impact on rest of FCC measurements. Provide design study for “background” event generators for QCD and $\gamma\gamma$ processes.
(1) QCD physics at FCC-e⁺e⁻

- e⁺e⁻ collisions provide an extremely clean environment with fully-controlled initial-state to probe q,g dynamics:

Advantages compared to p-p at the LHC:
- Electroweak initial-state with known kinematics
- No QCD “underlying event”
- Smaller QCD radiation (only in final-state)
- Smaller non-pQCD uncertainties (no PDFs)

- FCC vs. LEP2: Orders-of-magnitude higher statistics (and higher Q²)

- Key measurements:
 - Strong coupling \(\alpha_s \) with <1% uncertainties through various observables.
 - Colour reconnection (\(m_{top} \))
 - High-precision QCD: multi-jets
 - High-precision QCD: q,g,c,b fragmentation
 - γγ physics: \(F_2^\gamma(x,Q^2) \), BFKL via VV,…
 - …
(2) Photon-photon physics at FCC-e⁺e⁻

- Electromagnetic field of high-energy charge = equivalent photon flux. Weizsäcker-Williams (EPA) spectrum for e± beam:

\[
\frac{dN_\gamma}{dz} \approx \frac{\alpha_{em}}{2\pi} \left[\frac{1}{z} \left(1 + (1 - z)^2 \right) \ln \frac{Q_{\text{max}}^2}{Q_{\text{min}}^2} \right], \quad z = \omega / E_e
\]

Soft bremsstrahlung γ spectrum

- Two-photon collisions provide complementary QCD, EW, Higgs, BSM physics opportunities, although with reduced lumis & energies:

 - \(\mathcal{L}_{\gamma\gamma} (W_{\gamma\gamma} > 0.1 \cdot E_e) \sim 10^{-2} \mathcal{L}_{e^+e^-} \)
 - \(\mathcal{L}_{\gamma\gamma} (W_{\gamma\gamma} > 0.5 \cdot E_e) \sim 0.4 \cdot 10^{-3} \mathcal{L}_{e^+e^-} \) (Main reason for Compton-backscattered laser-photons at PLC: \(E_\gamma \sim E_{e^+} \), \(\mathcal{L}_{\gamma\gamma} \sim 0.8 \cdot \mathcal{L}_{e^+e^-} \))
QCD physics at FCC-e^+e^-
Multi-prong determination of α_s coupling

- α_s = crucial parameter for SM precision fits, couplings unification, ...
 - <1% uncertainties required

- Event shapes/thrust (NNLO+N^3LL), jet rates (NNLO): reduced npQCD uncertainties at FCC.

- Z,W hadronic decays ($N^3,4$LO):
 \[R_Z = \frac{\Gamma(Z \to h)}{\Gamma(Z \to l)} = R_Z^{EW} N_C (1 + \sum_{n=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + O(\alpha_s^5) + \delta_m + \delta_{np}) \rightarrow 10^{12} Z's \]
 \[B_h \equiv \frac{\Gamma_{had}}{\Gamma_{tot}} \rightarrow 5 \times 10^7 WW's \]

- τ hadron decay ($N^3,4$LO)
 \[R_\tau = \frac{\Gamma(\tau^- \to \nu_\tau + \text{hadrons})}{\Gamma(\tau^- \to \nu_\tau \bar{\nu}_e)} = S_{EW} N_C (1 + \sum_{n=1}^{4} c_n \left(\frac{\alpha_s}{\pi}\right)^n + O(\alpha_s^5) + \delta_{np}) \]

<table>
<thead>
<tr>
<th>Method</th>
<th>Current relative precision</th>
<th>Future relative precision</th>
</tr>
</thead>
</table>
| e^+e^- evnt shapes | expt $\sim 1\%$ (LEP)
 thry ~ 1–3% (NNLO+up to N^3LL, n.p. signif.) | $<1\%$ possible (ILC/TLEP)
 $\sim 1\%$ (control n.p. via Q^2-dep.) |
| e^+e^- jet rates | expt $\sim 2\%$ (LEP)
 thry $\sim 1\%$ (NNLO, n.p. moderate) | $<1\%$ possible (ILC/TLEP)
 $\sim 0.5\%$ (NLL missing) |
| precision EW | expt $\sim 3\%$ (R_Z, LEP)
 thry $\sim 0.5\%$ (N^3LO, n.p. small) | 0.1% (TLEP 10]), 0.5% (ILC 11])
 $\sim 0.3\%$ (N^4LO feasible, ~ 10 yrs) |
| τ decays | expt $\sim 0.5\%$ (LEP, B-factories)
 thry $\sim 2\%$ (N^3LO, n.p. small) | $<0.2\%$ possible (ILC/TLEP)
 $\sim 1\%$ (N^4LO feasible, ~ 10 yrs) |

Snowmass'13, arXiv:1310.5189
Color reconnection, \(m_{\text{top}} \) & universe stability

- Running of the Higgs self-coupling with energy:

\[
(4\pi)^2 \frac{d\lambda}{d \ln \mu} = -6y_t^4 + \frac{9}{8}g_2^4 + \frac{27}{200}g_1^4 + \frac{9}{20}g_2^2g_1^2 + \lambda(12y_t^2 - 9g_2^2 + \frac{9g_1^2}{5}) + 24\lambda^2 + \text{higher loops}
\]

If \(m_H \) too large: \(\lambda \rightarrow \) non perturbative

If \(m_{\text{top}} \) too large: \(\lambda \rightarrow \) negative

If \(m_{\text{top}} \) (pole) > 171.2 GeV:
the universe is in a meta-stable state
(it will decay to true vacuum eventually)

CMS average:

\[m_{\text{top}} = 173.49 \pm 0.36 \pm 0.91 \text{ GeV} \]

\(\pm 0.45 \text{ GeV} \)
(color reconnection)

FCC-160: WW hadronic decays will reduce this uncertainty
High-precision multi-jets dynamics

- LEP/SLD data: Max. N=4 jets. Large uncertainties in regions of phase-space. Differential measurements not useable for high-precision (<10%, i.e. beyond LO+LL) theory. Ex.: jet rates vs. jet resolution (4→5,5→6 jets)

LEP Perturbative Region (k_T≥5GeV)

- Durham Jet resolution scale
- FCC multijets: ~1% precision (large stats, higher-Q^2, better detectors). Fractal jet structure, scale breaking, power corrections, coherence, subleading colour corrections, subleading logs (compressed hierarchies), mass corrections, spin correlations, n-loop corrections, g→qq, IR limits,...
High-precision q,g,c,b fragmentation

- **LHC data**: Parton fragmentation complicated by IS and FS effects: multi-parton interactions, colour reconnection, collective effects, ...

- **High-n events** probe hard + soft QCD. (+reference for pp)

- **Baryon rates** (beyond p,Λ) known only to $\sim 10\% - 20\%$ Spectra likewise or worse

- **High Multiplicity Events**

- **Rare states**

- **D and B fragmentation**
 - Few clean spectra
 - Uncertainties $> 10\%$
 - Especially in soft and hard regions

- **FCC**: Huge jet statistics with flavour ID. Rates & fragmentation spectra at 1% level also for rare/exotic states, in extrema of distributions

- **Tera-Z?**
 - c or doubly charmed?

- **pQCD 3 charm**

- **+ Improve LEP limits on colour reconnections**
 - clear signal?
 - STUDY colour reconnections
 - Feedback to pp
QCD in \(\gamma-\gamma\) collisions at FCC-\(e^+e^-\) (I)

- **Hadron production cross section versus \(\sqrt{s}\):**

 - **Hadronic cross-sections versus \(\sqrt{s}\):**

 - **\(e^+e^-\rightarrow\) hadrons (total)**
 - **\(\gamma\gamma\rightarrow\) hadrons (total)**

 \[\sigma(\gamma\gamma\rightarrow\text{hadrons}) \sim \ln(s) \]

 \[\sigma(e^+e^-\rightarrow\text{hadrons}) \sim 1/s \]

- **At \(\sqrt{s}\sim300\) GeV, \(\gamma\gamma\) x-sections are \(\sim5\cdot10^4\) times higher:**

 - \(\sigma(\gamma\gamma\rightarrow\text{hadrons})\sim\) 5 \(\mu\)b
 - \(\sigma(ee\rightarrow\text{hadrons})\sim\) 0.1 nb

 Hadron yields “just” \(\sim2\) orders of magnitude higher, taking into account \(\mathcal{L}\)\(_{\text{eff}}\sim10^{-(2-3)}\) reduction penalty

- **Hadronic backgrounds** for all other FCC physics studies

FCC Kickoff Meeting, Geneva, Feb. 2014

David d'Enterria (CERN)
QCD in γ-γ collisions at FCC-e$^+$e$^-$ (II)

- Leading QCD contributions in γ-γ collisions:

 - Soft (VMD)
 - Direct
 - γ-"hadron"
 - "hadron"-"hadron"

- $\sigma_{tot}(\gamma\gamma)$, (di)jets, resonances, incl. hadrons, heavy-Q, ... via untagged e$^\pm$

- Photon QED & QCD structure functions:

 - $F_{2,QCD/QED}^\gamma$ over wide (x,Q^2), gluon content of γ
 - Quasireal/virtual γ via single/double tags

- BFKL dynamics via $\gamma\gamma \rightarrow \rho\rho, J/\psi, J/\psi, YY$:
Non-QCD physics via $\gamma\gamma$ collisions at FCC-e^+e^-
Non-QCD γ-γ physics at FCC-e$^+$e$^-$

- Convolve e$^+$e$^-$ EPA spectra, scale by beam \mathcal{L}_{ee}
- Thanks to large FCC lumi: $\mathcal{L}_{\gamma\gamma}$~20 times higher than p-p($\gamma\gamma$) at LHC without huge LHC p-p pileup.
- Double tagging outgoing e$^+$e$^-$: Forward detectors (\simmrad) needed

Examples:

- $\gamma\gamma \rightarrow \tau\tau$: $\sim 10^8$ di-τ/year
- $\gamma\gamma \rightarrow H$: $\sim 10^3$ LbyL/year ($m_H > 5$GeV)
- $\gamma\gamma \rightarrow WW$: $\sim 10^4$ WW/year
- $\gamma\gamma \rightarrow \tau\tau$: $\sim 10^8$ di-τ/year
- $\gamma\gamma \rightarrow H$: $\sim 10^3$ LbyL/year ($m_H > 5$GeV)
- $\gamma\gamma \rightarrow WW$: $\sim 10^4$ WW/year

$N_x = \int dW_{\gamma\gamma} \frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}} \sigma_{x}^{\gamma\gamma}(W_{\gamma\gamma})$
Anomalous e.m. τ moments via $\gamma\gamma \rightarrow \tau\tau$

- Magnetic moment of tau-lepton: $a_\tau = 1.17734(2)e^{-4}$ (QED)
 Current LEP bounds: $-0.052 < a_\tau < 0.013$

- Electric dipole-moment of tau-lepton: $|d_\tau| < 10^{-34}$ e cm
 Current LEP (also BELLE) limit: $|d_\tau| < 3.1 \cdot 10^{-16}$ e cm

- Anomalous moments via $\gamma\gamma \rightarrow \tau\tau$ (x-section=270 pb at FCC-Z):

 \[\Gamma^\nu = F_1(q^2)\gamma^\nu + \frac{i}{2m_\tau}F_2(q^2)\sigma^{\nu\mu}q_\mu + \frac{1}{2m_\tau}F_3(q^2)\sigma^{\nu\mu}q_\mu \gamma^5\]

 \[F_1(0) = 1, \ F_2(0) = a_\tau, \ F_3(0) = \frac{2m_\tau d_\tau}{e}.\]

- Two-photon di-tau at CLIC (or FCC-ee) at 0.5 TeV, $2 \cdot 10^{34}$ cm$^{-2}$s$^{-1}$:
 x20 improved limits
Summary: QCD & $\gamma \gamma$ physics at FCC-e^+e^-

- $\alpha_s(Q)$ with <1% uncertainty with high stats and different methods:
 - Color reconnection
 - High-precision multi-jet final-states
 - High-precision q,g,c,b fragmentation
 - $\sigma_{tot}(\gamma\gamma)$, γ structure function, BFKL,...

- Non-QCD physics accessible via EPA fluxes:
 $$\mathcal{L}_{\text{eff}}(\text{FCC},\gamma\gamma) \sim 20 \times \mathcal{L}_{\text{eff}}(pp,\gamma\gamma)$$
 - Anomalous τ e.m. moments ($\gamma\gamma \rightarrow \tau\tau$)
 - Constraints on a aQGC ($\gamma\gamma WW$)
 - Other processes: $\gamma\gamma \rightarrow H$, $\gamma\gamma \rightarrow \gamma\gamma$, ...

- Unique physics programme with rich opportunities! More to explore!

Impact on other FCC-ee sectors (top, Higgs, EW, ...)

David d'Enterria (CERN)
WG5 mandate: Managerial objectives

- Joint experiment-phenomenology group with 2 (bi-annual) conveners: 2014-2016: D. d'Enterria (dde@cern.ch), P. Skands (Peter.Skands@cern.ch)

- Build international collaboration with synergies with similar e^+e^- (linear or circular) collider studies.

- Attract people for the studies relevant to the group.

- Maintain high level of contacts with the other WGs.

- Create sub-groups (with sub-conveners) matching the scientific objectives.

- Appoint editors towards the production of intermediate reviews and a contributions to final Yellow Report.

- Report progress to the physics coordination at monthly FCC-ee physics meetings.
WG5 mandate: Timescales & deliverables

- **“Exploration” phase (Feb'14 – March'15):** Identify all possible options and potential studies, including requirements and constraints.
 - **Deliverable:** Interim written report for review milestone workshop

- **“Analysis” phase (March'15 – Sept'16):** Detailed studies of the identified baselines.
 - **Deliverable:** Interim written report for review milestone workshop

- **“Elaboration” phase (Sept'16 – Dec'17):** Delivery of all information required for the final Conceptual Design Report (CDR) of the study.
 - **Final Yellow Report (early 2018):** to be included into the FCC CDR.

JOIN THE QCD & PHOTON-PHOTON WG5 ACTIVITIES !
Backup slides
"Golden" $\gamma \gamma$ physics channels at FCC-e$^+e^-$

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma \gamma \rightarrow H, h \rightarrow bb$</td>
<td>SM/MSSM Higgs, $M_{H,h} < 160$ GeV</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow H \rightarrow WW(*)$</td>
<td>SM Higgs, $140 < M_H < 190$ GeV</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow H \rightarrow ZZ(*)$</td>
<td>SM Higgs, $180 < M_H < 350$ GeV</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow H \rightarrow \gamma \gamma$</td>
<td>SM Higgs, $120 < M_H < 160$ GeV</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow H \rightarrow t\bar{t}$</td>
<td>SM Higgs, $M_H > 350$ GeV</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow H, A \rightarrow bb$</td>
<td>MSSM heavy Higgs, intern. tan β</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow f \bar{f}, \tilde{\chi}_i^+ \tilde{\chi}_i^-$</td>
<td>large cross sections</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow \tilde{g} \tilde{g}$</td>
<td>measurable cross sections</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow H^+ H^-$</td>
<td>large cross sections</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow S[\tilde{t}\tilde{t}]$</td>
<td>$\tilde{t}\tilde{t}$ stoponium</td>
</tr>
<tr>
<td>$e\gamma \rightarrow \tilde{e}^{-} \tilde{\chi}_1^0$</td>
<td>$M_{\tilde{e}^{-}} < 0.9 \times 2E_0 - M_{\chi_1^0}$</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow \gamma \gamma$</td>
<td>non-commutative theories</td>
</tr>
<tr>
<td>$e\gamma \rightarrow eG$</td>
<td>extra dimensions</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow \phi$</td>
<td>Radions</td>
</tr>
<tr>
<td>$e\gamma \rightarrow \tilde{e}\tilde{G}$</td>
<td>superlight gravitions</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow W^+ W^-$</td>
<td>anom. W inter., extra dimensions</td>
</tr>
<tr>
<td>$e\gamma \rightarrow W^- \nu_e$</td>
<td>anom. W couplings</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow 4W/(Z)$</td>
<td>WW scatt., quartic anom. W,Z</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow t\bar{t}$</td>
<td>anomalous top quark interactions</td>
</tr>
<tr>
<td>$e\gamma \rightarrow t\bar{b}\nu_e$</td>
<td>anomalous Wtb coupling</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow$ hadrons</td>
<td>total $\gamma \gamma$ cross section</td>
</tr>
<tr>
<td>$e\gamma \rightarrow e^- X, \nu_e X$</td>
<td>NC and CC structure functions</td>
</tr>
<tr>
<td>$\gamma g \rightarrow q\bar{q}$, $c\bar{c}$</td>
<td>gluon in the photon</td>
</tr>
<tr>
<td>$\gamma \gamma \rightarrow J/\psi J/\psi$</td>
<td>QCD Pomeron</td>
</tr>
</tbody>
</table>
Anomalous couplings at FCC-e⁺e⁻ (γγ)

- **γγ → WW** quartic/trilinear couplings:

 \[\sigma \sim 20–90 \text{ pb} \quad (160–500 \text{ GeV}) \]

- **γγ → t\bar{t}**:

 \[\sigma \sim 1 \text{ pb} \quad (>340 \text{ GeV}) \]

- **γγ → ZZ, γγ → WWZ** quartic couplings:

 \[\sigma \sim 20–150 \text{ fb} \quad (280–500 \text{ GeV}) \]

- Also nice opportunities in eγ mode:

 e.g. eγ → Wν (again for anomalous couplings)

[PLC, TESLA hep-ex/0108012]